Abstract

Abstract Using outputs from the “twentieth-century climate in coupled models” (20c3m) control run of the Coupled Model Intercomparison Project, phase 3 (CMIP3), coupled GCMs, the authors have examined how seasonal variations of the Seychelles Dome (SD) are simulated in the southwestern Indian Ocean. The observed SD shows a dominant semiannual signal due to the semiannual variation in the local Ekman upwelling resulting from a combination of two terms related to the wind stress curl and the zonal wind stress. However, all models fail to reproduce this important mechanism. In particular, the latter contribution—that determined by the seasonal variation of the zonal wind stress associated with the Indian monsoon—is not well simulated. Successful models need to reproduce the asymmetric nature of the monsoon: a shorter and stronger summer monsoon and a longer and weaker winter monsoon. Possible remedies for the model bias are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.