Abstract

Quantitative stir bar sorptive extraction methodology, followed by gas chromatography-mass spectrometry (GC-MS) and element-specific atomic emission detection (AED) were utilized to analyze seasonal changes in volatile components of preen oil secretions in Junco hyemalis. Juncos were held in long days to simulate breeding conditions, or short days to simulate nonbreeding conditions. Linear alcohols (C(10)-C(18)) were the major volatile compounds found in preen oil, and in both sexes their levels were higher when birds were housed on long as opposed to short days. Methylketones were found at lower levels, but were enhanced in both sexes during long days. Levels of 2-tridecanone, 2-tetradecanone, and 2-pentadecanone were also greater on long days, but only in males. Among carboxylic acids (C(12), C(14), and C(16)), linear but not branched acids showed some differences between the breeding and nonbreeding conditions, although the individual variation for acidic compounds was large. Qualitatively, more sulfur-containing compounds were found in males than females during the breeding season. Functionally, the large increase in linear alcohols in male and female preen oil during the breeding season may be an indication of altered lipid biosynthesis, which might signal reproductive readiness. Linear alcohols might also facilitate junco odor blending with plant volatiles in the habitat to distract mammalian predators. Some of the volatile compounds from preen oil, including linear alcohols, were also found on the wing feather surface, along with additional compounds that could have been of either metabolic or environmental origin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.