Abstract

Three‐dimensional finite element models were established for the Newfoundland and Labrador Shelf to investigate climatological monthly mean wind‐ and density‐driven circulation. The model was forced using wind stresses from the National Center for Environmental Prediction‐National Center for Atmospheric Research reanalysis data prescribed at the sea surface, large‐scale remote forcing determined from a North Atlantic model, monthly mean temperature and salinity climatology, and M2 tide on the open boundary. The model results were examined against various in situ observations (moored current meter, tide gauge, and vessel‐mounted acoustic Doppler current profiler data) and satellite drift measurements and discussed together with literature information. The seasonal mean circulation solutions were investigated in terms of relative importance of wind to density forcing for the Labrador Current. The model results indicate significant seasonal and spatial variations, consistent generally with previous study results and in approximate agreement with observations for the major currents. The region is dominated by the equatorward flowing Labrador Current along the shelf edge and along the Labrador and Newfoundland coasts. The Labrador Current is strong in the fall/winter and weak in the spring/summer. The mean transport of the shelf edge Labrador Current is 7.5 Sv at the Seal Island transect and 5.5 Sv through the Flemish Pass. The seasonal ranges are 4.5 and 5.2 Sv at the two sections, respectively. Density‐ and wind‐driven components are both important in the inshore Labrador Current. The density‐driven component dominates the mean component of the shelf edge Labrador Current while the large‐scale wind‐forcing contributes significantly to its seasonal variability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.