Abstract
Differential interferometry of synthetic aperture radar (DInSAR) can be used to generate high-precision surface displacement maps in continuous permafrost environments, capturing isotropic surface subsidence and uplift associated with the seasonal freeze and thaw cycle. We generated seasonal displacement maps using DInSAR with ultrafine-beam Radarsat-2 data for the summers of 2013, 2015, and 2019 at Cape Bounty, Melville Island, and examined them in combination with a land-cover classification, meteorological data, topographic data, optical satellite imagery, and in situ measures of soil moisture, soil temperature, and depth to the frost table. Over the three years studied, displacement magnitudes (estimated uncertainty ± 1 cm) of up to 10 cm per 48-day DInSAR stack were detected. However, generally, the displacement was far smaller (up to 4 cm). Surface displacement was found to be most extensive and of the greatest magnitude in low-lying, wet, and steeply sloping areas. The few areas where large vertical displacements (>2.5 cm) were detected in multiple years were clustered in wet, low lying areas, on steep slopes or ridges, or close to the coast. DInSAR also captured the expansion of two medium-sized retrogressive thaw slumps (RTS), exhibiting widespread negative surface change in the slump floor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.