Abstract

The sagebrush biotype is the largest in the western United States. This vast sagebrush community is thought to harbor equally vast and diverse arthropod communities, but these remain little explored. Our objective was to examine the diversity, abundance, and seasonal phenology of arthropod taxa found on the dominant shrub of the sage- brush ecosystem, big sagebrush (Artemisia tridentata). We wanted to improve understanding of this little-studied arthro- pod assemblage that may play significant roles in the dynamics of sagebrush populations and the sagebrush ecosystem. We sampled free-living and gall-forming arthropods from a stratified random sample of sagebrush plants at the Barton Road Ecological Research Area, Idaho, resulting in a sample of over 8000 individuals and 232 morphospecies. Species richness and abundance declined from May to August, and abundance of most taxa similarly declined over the summer. A few taxa, including Acari (mites), were notably more abundant in August. Fluid feeders were the most diverse and abundant free-living feeding guild during all months and comprised up to 79% of morphospecies. The gall formers included 4713 individuals of 12 species of gall flies (Rhopalomyia spp.), primarily (97%) R. ampullaria. Abundance of galls increased from small to large (presumably young to old) plants. Overall, A. tridentata was host to a high diversity of arthropods, some of which have potential to cause or mitigate significant damage to their host plant. Arthropods seem likely to have the greatest impact on sagebrush early in the growing season, when they are most diverse and abundant. Documentation of the full diversity of arthropods associated with sagebrush required samples taken throughout the growing season, but a single sample early in the growing season captured a high proportion of taxa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.