Abstract

Exponential attenuation of light intensity passing through forest canopies leads to the formation of sun- and shade-acclimated leaves contributing to overall canopy carbon gain. Using a gas-exchange technique, seasonal changes in photosynthetic parameters were investigated in situ to test the hypothesis that the relative contributions of sun- and shade-acclimated Norway spruce shoots to total carbon gain vary during the growing season and that the contribution of sun-acclimated shoots to total carbon uptake may be reduced during the hot and dry summer season. In agreement with the tested hypothesis, we found reduced photosynthetic capacity as well as reduced light-use efficiency for carbon assimilation in sun-acclimated shoots during summer months while these remained almost unchanged in shade-acclimated shoots. Reduction of photosynthetic capacity was primarily associated with reduced stomatal conductance. On the other hand, seasonal courses of mitochondrial dark respiration, quantum efficiency of photosynthetic reactions, and compensation irradiance were primarily driven by changes in temperature. Accordingly, the photosynthetic characteristics of sun- and shade-acclimated shoots tended to converge in early spring and late autumn when temperature was low. Such seasonal dynamics result in an increased contribution of shade-acclimated shoots to total carbon uptake at the beginning and end of the growing season as well as during hot and dry summer periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.