Abstract

Net CO(2) assimilation (A(net)) of canopy leaves is the principal process governing carbon storage from the atmosphere in forests, but it has rarely been measured over multiple seasons and multiple years. I measured midday A(net) in the upper canopy of maturing loblolly pine (Pinus taeda L.) trees in the piedmont region of the southeastern USA on 146 sunny days over 36 months. Concurrent data for leaf conductance and photosynthetic CO(2) response curves (A(net)-C(i) curves) were used to estimate the relative importance of stomatal limitations to CO(2) assimilation in the field. In fully expanded current-year and 1-year-old needles, midday light-saturated A(net) was constant over much of the growing season (5-6 &mgr;mol CO(2) m(-2) s(-1)), except during drought periods. During the winter season (November-March), midday A(net) of overwintering needles varied in proportion to leaf temperature. Net CO(2) assimilation at light saturation occurred when daytime air temperatures exceeded 5-6 degrees C, as happened on more than 90% of the sunny winter days. In both age classes of foliage, winter carbon assimilation accounted for approximately 15% of the daily carbon assimilation on sunny days throughout the year, and was relatively insensitive to year-to-year differences in temperature during this season. However, strong stomatal limitations to A(net) occurred as a result of water stress associated with freezing cycles in winter. During the growing season, drought-induced water stress produced the largest year-to-year differences in seasonal CO(2) assimilation on sunny days. Seasonal A(net) was more drought sensitive in current-year needles than in 1-year-old needles. Relative stomatal limitations to daily integrated A(net) were approximately 40% over the growing season, and summer drought rather than high temperatures had the largest impact on summer A(net) and integrated annual CO(2) uptake in the upper crown. Despite significant stomatal limitations, a long duration of near-peak A(net) in the upper crown, particularly in 1-year-old needles, conferred high seasonal and annual carbon gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.