Abstract
Solar ultraviolet-B (UVB) radiation has deleterious effects on plant-dwelling mites. We assessed the biological effects of UVB radiation on the eggs of the twospotted spider mite, Tetranychus urticae Koch, under both near ambient (UV+) and UV-attenuated (UV−) conditions from spring to autumn and compared them to the effects of temperature and humidity. The ambient daily UVB irradiance increased from January to August and then decreased rapidly until December, whereas egg hatchability under UV+ was lowest in April (10.7%) and increased almost linearly until October (74.9–92.3%). In contrast, hatchability under UV− was consistently high (96.2–99.8%) through all seasons. For UV+, the stepwise multiple linear regression analysis supported the negative correlation of hatchability with cumulative UVB irradiance during egg periods (cumulative dose), but did not support that with the mean daily UVB irradiance (dose rate), suggesting that UVB-induced mortality in T. urticae eggs is cumulative dose dependent rather than dose rate dependent. The high mortality in April may have reflected the slower development caused by the relatively lower temperature and higher UVB radiation, increasing the cumulative dose, while the low mortality in October may have reflected the faster development caused by the relatively higher temperature and lower UVB radiation, decreasing the cumulative dose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.