Abstract

We studied the flood tolerance of five tree species growing in the flooded forest adjacent to the Mapire river, in SW Venezuela. Mean photosynthetic rate and leaf conductance were 11 &mgr;mol m(-2) s(-1) and 700 mmol m(-2) s(-1), respectively. Xylem water potential ranged from -0.08 to -1.15 MPa. Based on leaf gas exchange as a criterion of tolerance to flooding, two response patterns were identified: (1) decreasing photosynthetic rate with increasing flooding and leaf conductance (Psidium ovatifolium Berg. ex Desc., Campsiandra laurifolia Benth., Symmeria paniculata Benth. and Acosmium nitens (Vog.) Benth); and (2) independence of photosynthesis and leaf conductance from flooding (Eschweilera tenuifolia (Berg.) Miers.). In the first response pattern, declining photosynthetic rate with flooding may be interpreted as a sign of reduced flood tolerance, whereas the second response pattern may indicate increased flood tolerance. An increase in xylem water potential with depth of water column was found for all species (with the possible exception of P. ovatifolium), indicating that flooding does not cause water stress in these trees. Submerged leaves that had been under water for between four days and four months generally had photosynthetic rates and leaf conductances similar to those of aerial leaves, indicating maintenance of photosynthetic capacity under water. Daily positive oscillations in glucan content in submerged leaves of P. ovatifolium and C. laurifolia suggest that submerged leaves do not represent a sink for photosynthates produced by aerial leaves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.