Abstract

Most animals must cope with seasonal fluctuations in environmental conditions, including variations in food availability and composition. Accordingly, it is expected that most species should exhibit reversible seasonal phenotypic adjustments in their physiology. Here, we assessed seasonal variation in the activity of three digestive enzymes (sucrase, maltase, and aminopeptidase-N) in one omniviorous bird species (Rufous-collared Sparrow (Zonotrichia capensis (P. L. Statius Müller, 1776))), three granivorous bird species (Black-chinned Siskin (Carduelis barbata (Molina, 1782)), Common Diuca Finch (Diuca diuca (Molina, 1782)), and Mourning Sierra Finch (Phrygilus fruticeti (Kittlitz, 1833))), and one insectivorous bird species (Plain-mantled Tit-Spinetail (Leptasthenura aegithaloides (Kittlitz, 1830))). Based on the adaptive modulation hypothesis, we predicted that the omnivorous species should exhibit the largest seasonal variation in the activity of its digestive enzymes in relation to granivorous and insectivorous species. We found that Z. capensis adjusts total activities of disaccharidases, total sucrase activity varied between seasons in C. barbata, and total activity of aminopeptidase-N only changed seasonally in L. aegithaloides. Moreover, this last species modified the tissue-specific activity of both disaccharidases as well as the wet mass of its intestine. Taken together, our results suggest that seasonal dietary changes occur in most of the species, regardless of the trophic categories in which they belong. Consequently, a better knowledge of the diet and its seasonal variation is necessary to better account for the results recorded in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.