Abstract
An assessment of the production, distribution and fate of highly branched isoprenoid (HBI) biomarkers produced by sea ice and pelagic diatoms is necessary to interpret their detection and proportions in the northern Bering and Chukchi Seas. HBIs measured in surface sediments collected from 2012 to 2017 were used to determine the distribution and seasonality of the biomarkers relative to sea ice patterns. A northward gradient of increasing ice algae deposition was observed with localized occurrences of elevated IP25 (sympagic HBI) concentrations from 68-70°N and consistently strong sympagic signatures from 71-72.5°N. A declining sympagic signature was observed from 2012 to 2017 in the northeast Chukchi Sea, coincident with declining sea ice concentrations. HBI fluxes were investigated on the northeast Chukchi shelf with a moored sediment trap deployed from August 2015 to July 2016. Fluxes of sea ice exclusive diatoms (Nitzschia frigida and Melosira arctica) and HBI-producing taxa (Pleurosigma, Haslea and Rhizosolenia spp.) were measured to confirm HBI sources and ice associations. IP25 was detected year-round, increasing in March 2016 (10 ng m-2 d-1) and reaching a maximum in July 2016 (1331 ng m-2 d-1). Snowmelt triggered the release of sea ice algae into the water column in May 2016, while under-ice pelagic production contributed to the diatom export in June and July 2016. Sea ice diatom fluxes were strongly correlated with the IP25 flux, however associations between pelagic diatoms and HBI fluxes were inconclusive. Bioturbation likely facilitates sustained burial of sympagic organic matter on the shelf despite the occurrence of pelagic diatom blooms. These results suggest that sympagic diatoms may sustain the food web through winter on the northeast Chukchi shelf. The reduced relative proportions of sympagic HBIs in the northern Bering Sea are likely driven by sea ice persistence in the region.
Highlights
Sea ice supports a diverse community of microalgae, bacteria, metazoan grazers, heterotrophic and mixotrophic protists, viruses and fungi [1,2,3,4]
POC fluxes were highest from August through September 2015 (1.09 to 1.18 g C m-2 d-1), a decline through the winter months and steady increase beginning in April 2016
This study confirms that satellite observations underestimate the ice algal component due to peak export occurring during snow melt that happens before sea ice break up
Summary
Sea ice supports a diverse community of microalgae (primarily diatoms), bacteria, metazoan grazers, heterotrophic and mixotrophic protists, viruses and fungi [1,2,3,4]. Estimates of sea ice algae contributions to total primary production in the Arctic are widely variable, ranging from 4 to 26% in seasonally ice covered waters [9] and upwards of 50% in the central Arctic Ocean [5]. It has been suggested that these ice algae blooms are an important early season source of food to pelagic grazers and benthic communities [6, 12,13,14,15,16]. The application of biogeochemical methods to quantify and monitor sea ice algae contributions to pelagic and benthic food webs can be used to address these limitations associated with traditional field and satellite-based observations of sympagic production
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.