Abstract

Activity of colonies of the western drywood termite, Incisitermes minor, was measured with acoustic emission (AE) technology in five loquat (Eriobotrya japonica) logs. Termite activity, whether it was feeding, excavation or movement, was monitored for 11 months under ambient conditions in a small wooden structure maintained at the University of California Richmond Field Station. AE, temperature, and humidity data were measured in 3-minute increments. Termite activity was greater during the warmer summer months compared to the cooler winter months. Termites in all five logs displayed a similar daily cycle of activity, peaking in the late afternoon. Seasonal and daily fluctuations in termite activity were significantly associated with temperature, whereas humidity did not appear to have a noticeable effect on termite activity. Possible mechanisms that drive the seasonal and daily cycles in termite activity, as measured by AE technology, and the possible implications for inspections and post-treatment analysis are discussed.

Highlights

  • Seasonal activity patterns of drywood termites have an important impact on our ability to detect these structural pests and treat infestations

  • acoustic emission (AE) ring down counts displayed a non-linear pattern of increasing and decreasing values associated with temperature (Figures 1 and 2)

  • Termite activity was highest during the warmer spring and summer months compared to winter

Read more

Summary

Introduction

Seasonal activity patterns of drywood termites have an important impact on our ability to detect these structural pests and treat infestations. The presence of alates and shed wings within. Insects 2011, 2 infested structures are often the first signs of the presence of drywood termites. Feeding and foraging, including excavation of wood, are important drywood termite activities; little is known whether they occur randomly or follow an underlying pattern. The cryptic behavior of drywood termites hinders studies on their feeding and foraging biology. Because direct observation is impossible in wood naturally infested by drywood termites, we must rely on indirect methods of observation. A method that has proven extremely useful is the quantification of vibrations within termite-infested wood using acoustic emission (AE) technology

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.