Abstract

BackgroundVitamin D status and season are intrinsically linked, and both have been proposed to be associated with glucose homeostasis in pregnancy, with conflicting results. We aimed to determine if exposure to winter and low maternal 25 hydroxyvitamin D (25OHD) in early pregnancy were associated with maternal glucose metabolism.MethodsThis is a secondary data analysis of 334 pregnant women enrolled in the ROLO study, Dublin. Serum 25OHD, fasting glucose, insulin and insulin resistance (HOMA-IR) were measured in early (12 weeks’ gestation) and late pregnancy (28 weeks’ gestation). Season of first antenatal visit was categorised as extended winter (November–April) or extended summer (May–October). Multiple linear regression models, adjusted for confounders, were used for analysis.ResultsThose who attended their first antenatal visit in extended winter had lower 25OHD compared to extended summer (32.9 nmol/L vs. 44.1 nmol/L, P < 0.001). Compared to those who attended their first antenatal visit during extended summer, extended winter was associated with increased HOMA-IR in early-pregnancy (46.7%) and late pregnancy (53.7%), independent of 25OHD <30 nmol/L and confounders. Early pregnancy 25OHD <30 nmol/L and extended winter were independently associated with significantly higher fasting glucose in late pregnancy (B = 0.15 and 0.13, respectively).ConclusionsWomen who attended their first antenatal visit during the months of extended winter were more likely to have raised insulin resistance in early pregnancy, which had a lasting association to 28 weeks, and was independent of 25OHD. Our novel findings imply that seasonal variation in insulin resistance may not be fully explained by differences in vitamin D status. This could reflect circannual rhythm or seasonal lifestyle behaviours, and requires further exploration.Trial registrationISRCTN registry, ISRCTN54392969, date of registration: 22/04/2009, retrospectively registered.

Highlights

  • Vitamin D status and season are intrinsically linked, and both have been proposed to be associated with glucose homeostasis in pregnancy, with conflicting results

  • Given that the association between early gestation through extended winter and insulin resistance is independent of serum 25 hydroxyvitamin D (25OHD)

  • No interaction effect was observed between season and vitamin D with regards to glucose homeostasis

Read more

Summary

Introduction

Vitamin D status and season are intrinsically linked, and both have been proposed to be associated with glucose homeostasis in pregnancy, with conflicting results. The association between low vitamin D levels and abnormalities in glucose tolerance is the subject of scientific debate, with some studies reporting that maternal insulin sensitivity, fasting glucose and gestational diabetes are not associated with 25OHD [7], while others have found inverse associations between 25OHD, O’Brien et al Nutrition & Metabolism (2017) 14:50 fasting glucose [8] and risk of gestational diabetes [9]. Due to the seasonal nature of 25OHD concentrations in many parts of the world [32], and the observed associations between vitamin D and insulin resistance, it would seem prudent to hypothesise that seasonal variation of glucose homeostasis may be mediated through 25OHD. In 2016 the Scientific Advisory Committee on Nutrition stated that the metabolic implications of seasonal variation in serum 25OHD remain unknown, highlighting the necessity for research on this topic [33]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.