Abstract

We reemphasize the strong dependence of the branching ratios $B(K^+\to\pi^+\nu\bar\nu)$ and $B(K_L\to\pi^0\nu\bar\nu)$ on $|V_{cb}|$ that is stronger than in rare $B$ decays, in particular for $K_L\to\pi^0\nu\bar\nu$. Thereby the persistent tension between inclusive and exclusive determinations of $|V_{cb}|$ weakens the power of these theoretically clean decays in the search for new physics (NP). We demonstrate how this uncertainty can be practically removed by considering within the SM suitable ratios of the two branching ratios between each other and with other observables like the branching ratios for $K_S\to\mu^+\mu^-$, $B_{s,d}\to\mu^+\mu^-$ and $B\to K(K^*)\nu\bar\nu$. We use as basic CKM parameters $V_{us}$, $|V_{cb}|$ and the angles $\beta$ and $\gamma$ in the unitarity triangle (UT) with the latter two determined through the measurements of tree-level $B$ decays. This avoids the use of the problematic $|V_{ub}|$. A ratio involving $B(K^+\to\pi^+\nu\bar\nu)$ and $B(B_s\to\mu^+\mu^-)$ while being $|V_{cb}|$-independent exhibits sizable dependence on the angle $\gamma$. It should be of interest for several experimental groups in the coming years. We point out that the $|V_{cb}|$-independent ratio of $B(B^+\to K^+\nu\bar\nu)$ and $B(B_s\to\mu^+\mu^-)$ from Belle II and LHCb signals a $1.8\sigma$ tension with its SM value. As a complementary test of the Standard Model, we propose to extract $|V_{cb}|$ from different observables as a function of $\beta$ and $\gamma$. We illustrate this with $\epsilon_K$, $\Delta M_d$ and $\Delta M_s$ finding tensions between these three determinations of $|V_{cb}|$ within the SM. From $\Delta M_s$ and $S_{\psi K_S}$ alone we find $|V_{cb}|=41.7(6)\times 10^{-3}$ and $|V_{ub}|=3.64(12)\times 10^{-3}$. We stress the importance of a precise measurement of $\gamma$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.