Abstract

The ISS-based CALET detector which is in operation since October 2015, can play an important role in indirect search of Dark Matter by measuring the electron + positron cosmic-ray spectrum in the TeV region for the first time directly. With its fine energy resolution $(\sim 2\%)$ and high proton rejection ratio $(1 : 10^5)$, CALET has a capability to detect fine structures in $(e^+ + e^− )$ spectrum. In this work, we have investigated CALET’s potential to discern between Dark Matter decay and nearby pulsars as the origin of the Cosmic Ray positron excess observed by PAMELA or AMS-02. A parametrization of the propagated electron and positron spectra is fitted to the existing measurements, where either 3-body decay of Fermionic Dark Matter or pulsar assumed responsible for the positron excess. Expected CALET data for Dark Matter decay models which can explain the positron excess are calculated and analyzed. The signal from a particular 3-body Dark Matter decay, which can explain the measurements from the AMS-02 experiment, is shown to be distinguishable from a single pulsar source by observing $(e^+ + e^−)$ spectrum with CALET. We show that an especially clear separation of the pulsar model is possible from the Dark Matter model for which the diffuse γ-ray flux is possibly compatible with the Fermi-LAT data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.