Abstract

A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H→aa→bb¯bb¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \ extrm{H}\ o \ extrm{aa}\ o \ extrm{b}\\overline{\ extrm{b}}\ extrm{b}\\overline{\ extrm{b}} $$\\end{document}. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb−1. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 < ma < 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp → WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction BH→aa→bb¯bb¯\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{B}\\left(\ extrm{H}\ o \ extrm{aa}\ o \ extrm{b}\\overline{\ extrm{b}}\ extrm{b}\\overline{\ extrm{b}}\\right) $$\\end{document}. The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for ma = 20 GeV to 0.36 for ma = 60 GeV, complementing other measurements in the μμττ, ττττ and bbℓℓ (ℓ = μ, τ) channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.