Abstract

BackgroundZygosaccharomyces bailii is considered the most problematic acidic food spoilage yeast species due to its exceptional capacity to tolerate high concentrations of weak acids used as fungistatic preservatives at low pH. However, the mechanisms underlying its intrinsic remarkable tolerance to weak acids remain poorly understood. The identification of genes and mechanisms involved in Z. bailii acetic acid tolerance was on the focus of this study. For this, a genomic library from the highly acetic acid tolerant hybrid strain ISA1307, derived from Z. bailii and a closely related species and isolated from a sparkling wine production plant, was screened for acetic acid tolerance genes. This screen was based on the transformation of an acetic acid susceptible Saccharomyces cerevisiae mutant deleted for the gene encoding the acetic acid resistance determinant transcription factor Haa1.ResultsThe expression of 31 different DNA inserts from ISA1307 strain genome was found to significantly increase the host cell tolerance to acetic acid. The in silico analysis of these inserts was facilitated by the recently available genome sequence of this strain. In total, 65 complete or truncated ORFs were identified as putative determinants of acetic acid tolerance and an S. cerevisiae gene homologous to most of them was found. These include genes involved in cellular transport and transport routes, protein fate, protein synthesis, amino acid metabolism and transcription. The role of strong candidates in Z. bailii and S. cerevisiae acetic acid tolerance was confirmed based on homologous and heterologous expression analyses.ConclusionsISA1307 genes homologous to S. cerevisiae genes GYP8, WSC4, PMT1, KTR7, RKR1, TIF3, ILV3 and MSN4 are proposed as strong candidate determinants of acetic acid tolerance. The ORF ZBAI_02295 that contains a functional domain associated to the uncharacterised integral membrane proteins of unknown function of the DUP family is also suggested as a relevant tolerance determinant. The genes ZbMSN4 and ZbTIF3, encoding a putative stress response transcription factor and a putative translation initiation factor, were confirmed as determinants of acetic acid tolerance in both Z. bailii and S. cerevisiae. This study provides valuable indications on the cellular components, pathways and processes to be targeted in order to control food spoilage by the highly acetic acid tolerant Z. bailii and Z. bailii-derived strains. Additionally, this information is essential to guide the improvement of yeast cells robustness against acetic acid if the objective is their use as cell factories.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2278-6) contains supplementary material, which is available to authorized users.

Highlights

  • Zygosaccharomyces bailii is considered the most problematic acidic food spoilage yeast species due to its exceptional capacity to tolerate high concentrations of weak acids used as fungistatic preservatives at low pH

  • ISA1307 genes homologous to S. cerevisiae genes GYP8, WSC4, PMT1, KTR7, RKR1, TIF3, ILV3 and MSN4 are proposed as strong candidate determinants of acetic acid tolerance

  • Selection of S. cerevisiae transformants with increased tolerance to acetic acid through the expression of an ISA1307 genomic library To search for genes involved in the remarkable tolerance to acetic acid in a Z. bailii-related strain we looked for suppressors of the susceptibility phenotype of S. cerevisiae BY4741_haa1Δ through the transformation of this strain with a previously constructed genomic library from the highly tolerant Z. bailii-derived interspecies hybrid strain ISA1307 [15]

Read more

Summary

Introduction

Zygosaccharomyces bailii is considered the most problematic acidic food spoilage yeast species due to its exceptional capacity to tolerate high concentrations of weak acids used as fungistatic preservatives at low pH. Zygosaccharomyces bailii is considered the most problematic spoilage yeast found in the food and beverage industry, in acidic foods, soft drinks, fruit juices, dairy products and salad dressings [1, 2] This yeast species ability to cause spoilage derives from its outstanding intrinsic capacity to resist to weak acids widely used as fungistatic preservatives, such as acetic, propionic, benzoic and sorbic acids [1,2,3,4]. Haa is considered one of the key players in the control of S. cerevisiae response to acetic acid due to its role in the direct, or indirect, regulation of approximately 80 % of acetic acid-responsive genes [6], several of them required for maximal tolerance to acetic acid [8] These genes code for protein kinases, MDR transporters, transcription factors and proteins involved in lipid metabolism and nucleic acid processing [6]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.