Abstract
<p>How fault segments grow and connect in regions with moderate to high seismic activity is key to assess associated hazards. Earthquakes may affect populated areas and can trigger tsunamis that threaten coastal areas and affect marine infrastructures. Regions accommodating relatively slow tectonic deformation may still enclose active fault systems capable of generating moderate to large magnitude earthquakes, albeit at long recurrence intervals (10<sup>3 </sup>to 10<sup>4</sup> years). Although the Alboran Sea is currently characterised by slow tectonic deformation and by earthquakes of low to moderate magnitude, large historical and instrumental events have also occurred (i.e., the Almeria 1522 <sub>IEMS98</sub> VIII-IX or the Al-Idrissi 2016 M<sub>w</sub> 6.4 earthquakes). This Neogene basin located in the westernmost Mediterranean Sea absorbs most of the convergence between the Eurasian and Nubian plates (3 - 5 mm/year) by means of four tectonic-scale fault systems: the Carboneras and Al-Idrissi left-lateral strike-slip faults, the Yusuf right-lateral strike-slip fault and the Alboran Ridge thrust.</p><p>Our study characterises the North-South fault system on the northern Alboran Sea to better understand the kinematics of the region on a larger scale. This system is proposed as the northern termination of the Al-Idrissi fault, and it may be presently evolving due to the transtensional stress field that affects the area. The first step to characterise the fault system has been to elaborate a detailed geomorphological map of the area to describe the identified scarps, their distribution, and structural relations. To achieve this, we have used very high-resolution bathymetric data (1x1 m pixel resolution) acquired with an autonomous underwater vehicle. The bathymetry shows several fault scarps striking N-S, resulting in horst and graben systems. The second step has involved the interpretation of high-resolution multichannel airgun and sparker seismic profiles running across the N-S faults. The integration of this dataset allows us to relate the morphological scarps with different normal faults interpreted in the seismic profiles. These faults cut the post-Messinian seismostratigraphic units (last 5.3 Ma) up to the seafloor, which supports that the fault system is currently active. Finally, the high segmentation of the North-South fault system and its small accumulated fault displacements supports it is in its initial stage of evolution.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.