Abstract

Fasting yellow-bellied sea snakes (Pelamis) have a very low rate of exchange of Na with sea water. Influx and efflux are balanced at a value near 8 μmoles/100 g h. This is only a fraction of the rate of exchange found in marine fish. Na influx is due to uptake in the head region; dermal and cloacal influx are minimal. The impermeability of the skin to Na has been confirmed in isolated preparations. The outer keratin layer seems to be the primary barrier, since the shed skin alone is also impermeable. Na efflux can be increased to 140 μm/100 g h by salt injections, and secretion by the sublingual salt gland can account for all of this loss. Fasting snakes are not in water balance in sea water. There is a net loss of water amounting to about 0.4% body wt/day that probably occurs mainly through the skin. The major osmotic problem ofPelamis in sea water seems to be water balance, not salt balance. Differences in salt gland size among sea snakes might be related to differences in skin permeability to water associated with dermal respiration. The importance of the skin as a permeability barrier suggests that the frequent skin shedding of sea snakes may be related to maintenance of low water permeability as well as to prevention of growth by marine fouling organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.