Abstract

AbstractThe primary aim of this review is to highlight that sea-ice microbes would be capable of occupying ice-associated biological niches on Europa and Enceladus. These moons are compelling targets for astrobiological exploration because of the inferred presence of subsurface oceans that have persisted over geological timescales. Although potentially hostile to life in general, Europa and Enceladus may still harbour biologically permissive domains associated with the ice, ocean and seafloor environments. However, validating sources of free energy is challenging, as is qualifying possible metabolic processes or ecosystem dynamics. Here, the capacity for biological adaptation exhibited by microorganisms that inhabit sea ice is reviewed. These ecosystems are among the most relevant Earth-based analogues for considering life on ocean worlds because microorganisms must adapt to multiple physicochemical extremes. In future, these organisms will likely play a significant role in defining the constraints on habitability beyond Earth and developing a mechanistic framework that contrasts the limits of Earth's biosphere with extra-terrestrial environments of interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.