Abstract

Se (Selenium) has been reported to be an important protective agent to decreases Cd (Cadmium) induced toxic in plants. However, it remains unclear how Se mitigates the uptake of Cd and increased the resistance to Cd toxicity. Hydroponic experiments were arranged to investigate the changes of physiological properties, root cell membrane integrity and Cd-related transporter genes in rape seedlings. Comparison of the biomass between the addition of Se and the absence of Se under Cd exposure showed that the Cd-induced growth inhibition of rape seedlings was alleviated by Se. Cd decreased the photosynthetic rate (Pn), stomatal conductance (Gs) and photosynthetic pigment content including chlorophyll a, chlorophyll b and carotenoid. However, all these parameters were all significantly improved by Se addition. Moreover, exposure to Se resulted in a decrease in Cd concentration in both shoot and root, ranging from 4.28 to 27.2%. Notably, the application of Se at a concentration of 1 µmol L- 1 exhibited the best performance. Furthermore, Se enhanced cell membrane integrity and reduced superoxide anion levels, thereby contributing to the alleviation of cadmium toxicity in plants. More critically, Se decreased the expression levels of root Cd-related transporter genes BnIRT1, BnHMA2 and BnHMA4 under Cd stress, which are responsible for Cd transport and translocation. These results are important to increase crop growth and reduce Cd load in the food chain from metal toxicity management and agronomical point of view.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.