Abstract

Elucidating the topology of gene regulatory networks (GRNs) from large single-cell RNA sequencing datasets, while effectively capturing its inherent cell-cycle heterogeneity and dropouts, is currently one of the most pressing problems in computational systems biology. Recently, graph learning (GL) approaches based on graph signal processing have been developed to infer graph topology from signals defined on graphs. However, existing GL methods are not suitable for learning signed graphs, a characteristic feature of GRNs, which are capable of accounting for both activating and inhibitory relationships in the gene network. They are also incapable of handling high proportion of zero values present in the single cell datasets. To this end, we propose a novel signed GL approach, scSGL, that learns GRNs based on the assumption of smoothness and non-smoothness of gene expressions over activating and inhibitory edges, respectively. scSGL is then extended with kernels to account for non-linearity of co-expression and for effective handling of highly occurring zero values. The proposed approach is formulated as a non-convex optimization problem and solved using an efficient ADMM framework. Performance assessment using simulated datasets demonstrates the superior performance of kernelized scSGL over existing state of the art methods in GRN recovery. The performance of scSGL is further investigated using human and mouse embryonic datasets. The scSGL code and analysis scripts are available on https://github.com/Single-Cell-Graph-Learning/scSGL. Supplementary data are available at Bioinformatics online.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call