Abstract

Annotation of cells in single-cell clustering requires a homogeneous grouping of cell populations. Since single-cell data are susceptible to technical noise, the quality of genes selected prior to clustering is of crucial importance in the preliminary steps of downstream analysis. Therefore, interest in robust gene selection has gained considerable attention in recent years. We introduce sc-REnF [robust entropy based feature (gene) selection method], aiming to leverage the advantages of $R{\prime}{e}nyi$ and $Tsallis$ entropies in gene selection for single cell clustering. Experiments demonstrate that with tuned parameter ($q$), $R{\prime}{e}nyi$ and $Tsallis$ entropies select genes that improved the clustering results significantly, over the other competing methods. sc-REnF can capture relevancy and redundancy among the features of noisy data extremely well due to its robust objective function. Moreover, the selected features/genes can able to determine the unknown cells with a high accuracy. Finally, sc-REnF yields good clustering performance in small sample, large feature scRNA-seq data. Availability: The sc-REnF is available at https://github.com/Snehalikalall/sc-REnF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.