Abstract

Abstract CO2 sequestration into depleted oil reservoir has been expected as a method of reducing CO2 emission. Moreover, the authors focus on in-situ microbial conversion process of carbon dioxide into methane by hydrogenotrophic methanogens that inhabit oil reservoir universally. It is important for this process how to supply hydrogenotrophic methanogens with hydrogen for their methane production in reservoir. This study is aimed at searching for the oil-degrading and hydrogen-producing thermophilic bacteria (ODHPTB) which can produce hydrogen from oil in reservoir brine. Reservoir brine was extracted from 10 producing wells in Yabase oilfield in Japan. Indigenous bacteria in brine samples were incubated with sterilized oil under anaerobic conditions (10% CO2 balance N2) at 50°C and/or 75°C. Both the production of hydrogen and methane and the consumption of carbon dioxide were observed in almost all culture solutions after 2 months incubation. The maximum rate of hydrogen production was 20.9 Nml/L-medium/day. These culture solution and raw brine were inoculated into nutrient agar medium and incubated under anaerobic conditions at 50°C and 75°C. Microbial single colonies formed in the nutrient agar medium after 2 weeks incubation were picked and inoculated into sterilized brine including sterilized oil as a hydrogen source. More than 40 strains were isolated and incubated in the brine medium and 24 strains were observed to produce hydrogen from oil after 1 month incubation. The maximum rate of hydrogen production was 1.0 Nml/L-medium/day. These results show that the in-situ microbial conversion process of carbon dioxide and residual oil into methane using ODHPTB and hydrogenotrophic methanogens is promising. Moreover, the most talented ODHPTB that was isolated in this study can be injected into reservoir in order to stimulate the conversion of carbon dioxide into methane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.