Abstract

Because of the importance of testing reproducibility of results, we present our findings regarding screening agents in preclinical chemoprevention studies in rodent models performed by the Chemopreventive Agent Development Research Group (CADRG) of the Division of Cancer Prevention of the NCI. These studies were performed via contracts to various commercial and academic laboratories. Primarily, results with positive agents are reported because positive agents may progress to the clinics. In testing reproducibility, a limited number of direct repeats of our standard screening assays were performed; which entailed initiating treatment shortly after carcinogen administration or in young transgenic mice and continuing treatment until the end of the study. However, three additional protocols were employed relating to reproducibility: (i) testing agents at lower doses to determine efficacy and reduced toxicity; (ii) testing agents later in tumor progression when microscopic lesions existed and, (iii) testing multiple agents of the same mechanistic class. Data with six models that were routinely employed are presented: MNU-induced ER-positive mammary cancer in rats; MMTV-Neu ER-negative mammary cancers in transgenic mice; AOM-induced colon tumors in rats; intestinal adenomas in Min mice; OH-BBN-induced invasive rat urinary bladder cancers in rats; and UV-induced skin squamous carcinomas in mice. It was found that strongly positive results were highly reproducible in the preclinical models evaluated. Cancer Prev Res; 11(10); 595-606. ©2018 AACR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.