Abstract

The study was aimed at evaluating the antioxidant and antimicrobial activities of methanol extract of Caesalpinia bonducella leaves (MECB) (Family: Caesalpiniaceae). The effect of MECB on antioxidant activity, reducing power, free radical scavenging (DPPH radical, nitric oxide radical, superoxide anion radical, hydroxyl radical and hydrogen peroxide radical scavenging), total phenolic content and antimicrobial activities were studied. The antioxidant activity of MECB increased in a dose dependent manner. About 50, 100, 250 and 500 g of MECB showed 53.4, 61.2, 69.1 and 76.2 % inhibition respectively on peroxidation of linoleic acid emulsion. Like antioxidant activity, the effect of MECB on reducing power increased in a dose dependent manner. The free radical scavenging activity of MECB was determined by DPPH radical scavenging method. The potency of this activity was increased with increased amount of extract. MECB was found to inhibit the nitric oxide radicals generated from sodium nitroprusside <TEX>$(IC_{50}\;=\;102.8\;g/ml)$</TEX> whereas the <TEX>$IC_{50}$</TEX> value of curcumin was 20.4 g/ml. Moreover, the MECB was found to scavenge the superoxide generated by photoreduction of Riboflavin. MECB was also found to inhibit the hydroxyl radical generated by Fenton reaction, where the <TEX>$IC_{50}$</TEX> value is 104.17 g/ml compared with catechin 5 g/ml, which indicates the antioxidant activity of MECB. The MECB capable of scavenging hydrogen peroxide in a concentration-dependent manner. The amounts of total phenolic compounds were also determined. Antimicrobial activities of MECB were carried out using disc diffusion methods with five Gram positive, four Gram negative and four fungal species. The results obtained in the present study indicate that MECB leaves are potential source of natural antioxidant and antimicrobial agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.