Abstract

Enterohemorrhagic E. coli (EHEC) O157:H7 can cause serious gastrointestinal and systemic disease in humans following direct or indirect exposure to ruminant feces containing the bacterium. The main colonization site of EHEC O157:H7 in cattle is the terminal rectum where the bacteria intimately attach to the epithelium and multiply in the intestinal mucus. This study aimed to identify genomic regions of EHEC O157:H7 that contribute to colonization and multiplication at this site. A bacterial artificial chromosome (BAC) library was generated from a derivative of the sequenced E. coli O157:H7 Sakai strain. The library contains 1152 clones averaging 150 kbp. To verify the library, clones containing a complete locus of enterocyte effacement (LEE) were identified by DNA hybridization. In line with a previous report, these did not confer a type III secretion (T3S) capacity to the K-12 host strain. However, conjugation of one of the BAC clones into a strain containing a partial LEE deletion restored T3S. Three hundred eighty-four clones from the library were subjected to two different selective screens; one involved three rounds of adherence assays to bovine primary rectal epithelial cells while the other competed the clones over three rounds of growth in bovine rectal mucus. The input strain DNA was then compared with the selected strains using comparative genomic hybridization (CGH) on an E. coli microarray. The adherence assay enriched for pO157 DNA indicating the importance of this plasmid for colonization of rectal epithelial cells. The mucus assay enriched for multiple regions involved in carbohydrate utilization, including hexuronate uptake, indicating that these regions provide a competitive growth advantage in bovine mucus. This BAC-CGH approach provides a positive selection screen that complements negative selection transposon-based screens. As demonstrated, this may be of particular use for identifying genes with redundant functions such as adhesion and carbon metabolism.

Highlights

  • Enterohemorrhagic E. coli (EHEC) strains are associated with serious gastrointestinal disease in humans that can lead to life threatening vascular damage due to the activity of Shiga toxins

  • It has been demonstrated that EHEC O157:H7 predominately colonizes the terminal rectum of cattle and bacterial multiplication at this site leads to the fecal excretion that is a threat to human health through contamination of bovine food products, produce, and water supplies (Naylor et al, 2003; Chase-Topping et al, 2008)

  • There are a number of EHEC O157:H7 factors that are known to contribute to colonization of cattle at this specific gastrointestinal niche based on both in vivo studies and through research on primary epithelial cells cultured from crypts isolated from this rectal site (Chase-Topping et al, 2008)

Read more

Summary

Introduction

Enterohemorrhagic E. coli (EHEC) strains are associated with serious gastrointestinal disease in humans that can lead to life threatening vascular damage due to the activity of Shiga toxins. There are a number of EHEC O157:H7 factors that are known to contribute to colonization of cattle at this specific gastrointestinal niche based on both in vivo studies and through research on primary epithelial cells cultured from crypts isolated from this rectal site (Chase-Topping et al, 2008). These include the locus of enterocyte effacement (LEE)-encoded type III secretion system (T3SS), various T3-secreted effector proteins, H7 flagellin, and a number of specific adhesins, including F9 fimbriae and autotransporters. With the application of massively parallel sequencing, these studies can be quantified giving exquisite information on the relative significance of each www.frontiersin.org

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.