Abstract

Monodispersed spherical silica particles emitting blue light were prepared by incorporating 2,5-bis(5-tert-butyl-2-benzoxazolyl)thiophene (BBOT) into a silica matrix. The morphological and photoluminescent properties were investigated to confirm the proper incorporation of BBOT into the silica matrix, using an electron microscope and a fluorescence spectrometer. Four possible models representing the distribution of the dye molecules in a dye-encapsulated silica particle were proposed. To analyze the distribution of the BBOT dye in the BBOT-encapsulated silica, the fluorescent emission intensity was measured while reducing the particle diameter by etching the outermost silica layer with hydrofluoric acid with 0-0.5 wt.% concentrations. The distribution of BBOT in a silica particle was investigated based on the relationship between the changes in particle diameter and the changes in emission intensity. The emission intensity of the BBOT-encapsulated silica particle oscillated with the decreasing particle diameter. This result supported the multilayered model. Information regarding the distribution of the dye in the silica matrix will provide valuable information for understanding the formation mechanism of dye-encapsulated silica.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.