Screening for lipid metabolism-related genes and identifying the therapeutic potential of ACACA for ER stress-related progression in hepatocellular carcinoma
Aim: The reprogramming of lipid metabolism can markedly enhance the nutritional adaptability of tumor cells to the glucose-deficient and hypoxic tumor microenvironment, which holds profound significance for the development and metastasis of liver cancer. Nevertheless, the alterations of lipid metabolism under stress conditions and the specific mechanisms remain ambiguous. The current study aimed to explore the molecular interaction between endoplasmic reticulum (ER) stress and lipid metabolism in hepatocellular carcinoma (HCC) using bioinformatics analysis, and further verify the role of core hub genes and offer potential targets for diagnosing and treating HCC. Methods: Differentially expressed lipid-related genes (DLRGs) were identified via cross-crossing differentially expressed genes (DEGs) in the TCGA-LIHC program and lipid metabolism-related genes in the Genecards database. Identification of hub genes was achieved by constructing a protein-protein interaction (PPI) network, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Disease correlation analysis was performed in the Comparison of Toxicology Database, receiver operating characteristic (ROC) curve and Kaplan-Meier curve analyses were performed for the hub genes, and the CIBERSORT algorithm was employed to assess immune infiltration. The role of acetyl-CoA carboxylase 1 (ACACA) in HCC was evaluated by Western blotting, polymerase chain reaction, immunohistochemistry, and CCK-8 assay. Results: In total, 131 DLRGs were identified, comprising 70 upregulated and 61 downregulated. PPI analysis identified 20 hub DLRGs, while ROC curve analysis and Kaplan-Meier analysis further revealed that ACACA, LCAT, APOC3, LPA and PON1 may hold diagnostic and prognostic value for HCC patients. More importantly, ACACA overexpression was related to unfavorable overall survival (OS) and adverse pathological characteristics in HCC patients. In addition, both free fatty acid (FFA) and tunicamycin (TM) could activate ER stress and enhance the expression of ACACA in HCC. Interestingly, inhibition of ER stress or fatty acid synthesis using 4-phenylbutyric acid (4-PBA) or fenofibrate significantly reduced the expression of ACACA, and fenofibrate inhibits HCC cell proliferation. Conclusion: The study identifies a novel core lipid metabolism-related gene called ACACA, which has prognostic and therapeutic potential for HCC. We also provide a deep understanding of lipid metabolism correlated with ER stress in the progression of HCC, offering new opportunities for the identification of biological targets and the development of drugs and treatments for HCC patients.
- # Endoplasmic Reticulum Stress
- # Hepatocellular Carcinoma
- # Lipid Metabolism In Hepatocellular Carcinoma
- # Lipid Metabolism-related Genes
- # Prognostic Value For Hepatocellular Carcinoma Patients
- # Characteristics In Hepatocellular Carcinoma Patients
- # Role Of acetyl-CoA Carboxylase
- # Metabolism In Hepatocellular Carcinoma
- # Reprogramming Of Lipid Metabolism
- # Treatments For Hepatocellular Carcinoma Patients
106
- 10.1111/cpr.12772
- Jan 31, 2020
- Cell Proliferation
390
- 10.1038/ncomms11960
- Jun 30, 2016
- Nature Communications
13215
- 10.3322/caac.21763
- Jan 1, 2023
- CA: A Cancer Journal for Clinicians
21
- 10.3892/mmr.2019.9994
- Feb 27, 2019
- Molecular Medicine Reports
51
- 10.7150/ijbs.33837
- Jan 1, 2019
- International Journal of Biological Sciences
84
- 10.1021/acs.biochem.0c00477
- Sep 15, 2020
- Biochemistry
58
- 10.3389/fonc.2019.01412
- Dec 11, 2019
- Frontiers in Oncology
17
- 10.1002/mco2.15
- Jul 9, 2020
- MedComm
48
- 10.1016/j.ejps.2019.105010
- Jul 17, 2019
- European Journal of Pharmaceutical Sciences
3906
- 10.1172/jci15593
- May 1, 2002
- Journal of Clinical Investigation
- Research Article
59
- 10.1194/jlr.m007104
- Feb 1, 2011
- Journal of Lipid Research
Palmitic acid (PA) upregulates oxidized LDL receptor-1 (LOX-1), a scavenger receptor responsible for uptake of oxidized LDL (oxLDL), and enhances oxLDL uptake in macrophages. However, the precise underlying mechanism remains to be elucidated. PA is known to induce endoplasmic reticulum (ER) stress in various cell types. Therefore, we investigated whether ER stress is involved in PA-induced LOX-1 upregulation. PA induced ER stress, as determined by phosphorylation of PERK, eIF2α, and JNK, as well as induction of CHOP in macrophage-like THP-1 cells. Inhibitors [4-phenylbutyric acid (PBA), sodium tauroursodeoxycholate (TUDCA), and salubrinal] and small interfering RNA (siRNA) for the ER stress response decreased PA-induced LOX-1 upregulation. Thapsigargin, an ER stress inducer, upregulated LOX-1, which was decreased by PBA and TUDCA. We next examined whether unsaturated FAs could counteract the effect of PA. Both oleic acid (OA) and linoleic acid (LA) suppressed PA-induced LOX-1. Activation of the ER stress response observed in the PA-treated cells was markedly attenuated when the cells were cotreated with OA or LA. In addition, OA and LA suppressed thapsigargin-induced LOX-1 upregulation with reduced activation of ER stress markers. Our results indicate that activation of ER stress is involved in PA-induced LOX-1 upregulation in macrophages, and that OA and LA inhibit LOX-1 induction through suppression of ER stress.
- Research Article
104
- 10.1093/humrep/deaa077
- May 1, 2020
- Human Reproduction
STUDY QUESTIONDoes metformin inhibit excessive androgen-induced endoplasmic reticulum (ER) stress in mouse granulosa cells (GCs) in vivo and in vitro?SUMMARY ANSWERMetformin inhibits testosterone-induced ER stress and unfolded protein response (UPR) activation by suppressing p38 MAPK phosphorylation in ovarian GCs.WHAT IS KNOWN ALREADYPolycystic ovary syndrome (PCOS) is associated with hyperandrogenism. Excessive testosterone induces ER stress and UPR activation in human cumulus cells, leading to cell apoptosis. Metformin has potential inhibitory effects on ER stress and UPR activation, as demonstrated in human pancreatic beta cells and obese mice.STUDY DESIGN, SIZE, DURATIONCumulus cells and follicular fluid were collected from 25 women with PCOS and 25 controls at our IVF centre. A dihydrotestosterone (DHT)-induced PCOS mouse model was constructed and treated with or without metformin. Primary mouse GCs and cumulus-oocyte complexes (COCs) were cultured with testosterone, metformin, a p38 MAPK inhibitor, or p38 MAPK small interfering RNA.PARTICIPANTS/MATERIALS, SETTING, METHODSThe levels of UPR sensor proteins and UPR-related genes were measured in cumulus cells from PCOS and control patients by real-time quantitative PCR (qPCR) and western blot. The ovaries, oocytes, GCs and COCs were collected from PCOS mice treated with metformin and controls. The expressions of ER stress markers and p38 MAPK phosphorylation were assessed by qPCR, western blot and immunofluorescence. A subsequent in vitro analysis with primary cultured GCs and COCs was used to confirm the influence of metformin on ER stress activation by qPCR and western blot. Finally, the effects of ER stress activation on GCs and COCs in relation to LH responsiveness were examined by qPCR and COC expansion.MAIN RESULTS AND THE ROLE OF CHANCEThe expression of the ER stress markers GRP78, CHOP and XBP1s in the cumulus cells was higher in PCOS patients than in control patients, as were the levels of the UPR sensor proteins p-IRE1α, p-EIF2α and GRP78. Compared to those of control mice, the ovaries, GCs and COCs of DHT-treated PCOS mice showed increased levels of ER stress marker genes and proteins. Hyperandrogenism in PCOS mouse ovaries also induced p38 MAPK phosphorylation in COCs and GCs. Metformin inhibited ER stress activation was associated with decreased p-p38 MAPK levels. In vitro experiments, testosterone-induced ER stress was mitigated by metformin or p38 MAPK inhibition in primary cultured GCs and COCs. COCs expanded rapidly in the presence of testosterone during LH administration, and ovulation-related genes, namely, Areg, Ereg, Ptgs2, Sult1e1, Ptx3 and Tnfaip6, were strongly expressed in the COCs and GCs. These effects were reversed by treatment with metformin, an ER stress inhibitor or by knockdown of p38 MAPK.LIMITATIONS, REASONS FOR CAUTIONThe number of PCOS patients in this study was small.WIDER IMPLICATIONS OF THE FINDINGSThis study provides further evidence for metformin as a PCOS treatment.STUDY FUNDING/COMPETING INTEREST(S)This study was funded by the National Key Research and Developmental Program of China (2018YFC1004800), the Key Research and Development Program of Zhejiang Province (2017C03022), the Zhejiang Province Medical Science and Technology Plan Project (2017KY085, 2018KY457), the National Natural Science Foundation of China (31701260, 81401264, 81701514), and the Special Funds for Clinical Medical Research of the Chinese Medical Association (16020320648). The authors report no conflict of interest in this work and have nothing to disclose.TRIAL REGISTRATION NUMBERN/A.
- Addendum
3
- 10.1093/humrep/deaa180
- Jul 9, 2020
- Human reproduction (Oxford, England)
Study question Does metformin inhibit excessive androgen-induced endoplasmic reticulum (ER) stress in mouse granulosa cells (GCs) in vivo and in vitro? Summary answer Metformin inhibits testosterone-induced ER stress and unfolded protein response (UPR) activation by suppressing p38 MAPK phosphorylation in ovarian GCs. What is known already Polycystic ovary syndrome (PCOS) is associated with hyperandrogenism. Excessive testosterone induces ER stress and UPR activation in human cumulus cells, leading to cell apoptosis. Metformin has potential inhibitory effects on ER stress and UPR activation, as demonstrated in human pancreatic beta cells and obese mice. Study design, size, duration Cumulus cells and follicular fluid were collected from 25 women with PCOS and 25 controls at our IVF centre. A dihydrotestosterone (DHT)-induced PCOS mouse model was constructed and treated with or without metformin. Primary mouse GCs and cumulus-oocyte complexes (COCs) were cultured with testosterone, metformin, a p38 MAPK inhibitor, or p38 MAPK small interfering RNA. Participants/materials, setting, methods The levels of UPR sensor proteins and UPR-related genes were measured in cumulus cells from PCOS and control patients by real-time quantitative PCR (qPCR) and western blot. The ovaries, oocytes, GCs and COCs were collected from PCOS mice treated with metformin and controls. The expressions of ER stress markers and p38 MAPK phosphorylation were assessed by qPCR, western blot and immunofluorescence. A subsequent in vitro analysis with primary cultured GCs and COCs was used to confirm the influence of metformin on ER stress activation by qPCR and western blot. Finally, the effects of ER stress activation on GCs and COCs in relation to LH responsiveness were examined by qPCR and COC expansion. Main results and the role of chance The expression of the ER stress markers GRP78, CHOP and XBP1s in the cumulus cells was higher in PCOS patients than in control patients, as were the levels of the UPR sensor proteins p-IRE1α, p-EIF2α and GRP78. Compared to those of control mice, the ovaries, GCs and COCs of DHT-treated PCOS mice showed increased levels of ER stress marker genes and proteins. Hyperandrogenism in PCOS mouse ovaries also induced p38 MAPK phosphorylation in COCs and GCs. Metformin inhibited ER stress activation was associated with decreased p-p38 MAPK levels. In vitro experiments, testosterone-induced ER stress was mitigated by metformin or p38 MAPK inhibition in primary cultured GCs and COCs. COCs expanded rapidly in the presence of testosterone during LH administration, and ovulation-related genes, namely, Areg, Ereg, Ptgs2, Sult1e1, Ptx3 and Tnfaip6, were strongly expressed in the COCs and GCs. These effects were reversed by treatment with metformin, an ER stress inhibitor or by knockdown of p38 MAPK. Limitations, reasons for caution The number of PCOS patients in this study was small. Wider implications of the findings This study provides further evidence for metformin as a PCOS treatment. Study funding/competing interest(s) This study was funded by the National Key Research and Developmental Program of China (2018YFC1004800), the Key Research and Development Program of Zhejiang Province (2017C03022), the Zhejiang Province Medical Science and Technology Plan Project (2017KY085, 2018KY457), the National Natural Science Foundation of China (31701260, 81401264, 81701514), and the Special Funds for Clinical Medical Research of the Chinese Medical Association (16020320648). The authors report no conflict of interest in this work and have nothing to disclose. Trial registration number N/A.
- Research Article
49
- 10.1074/jbc.m110.170944
- Apr 1, 2011
- Journal of Biological Chemistry
A specific polymorphism in the hemochromatosis (HFE) gene, H63D, is over-represented in neurodegenerative disorders such as amyotrophic lateral sclerosis and Alzheimer disease. Mutations of HFE are best known as being associated with cellular iron overload, but the mechanism by which HFE H63D might increase the risk of neuron degeneration is unclear. Here, using an inducible expression cell model developed from a human neuronal cell line SH-SY5Y, we reported that the presence of the HFE H63D protein activated the unfolded protein response (UPR). This response was followed by a persistent endoplasmic reticulum (ER) stress, as the signals of UPR sensors attenuated and followed by up-regulation of caspase-3 cleavage and activity. Our in vitro findings were recapitulated in a transgenic mouse model carrying Hfe H67D, the mouse equivalent of the human H63D mutation. In this model, UPR activation was detected in the lumbar spinal cord at 6 months then declined at 12 months in association with increased caspase-3 cleavage. Moreover, upon the prolonged ER stress, the number of cells expressing HFE H63D in early apoptosis was increased moderately. Cell proliferation was decreased without increased cell death. Additionally, despite increased iron level in cells carrying HFE H63D, it appeared that ER stress was not responsive to the change of cellular iron status. Overall, our studies indicate that the HFE H63D mutant protein is associated with prolonged ER stress and chronically increased neuronal vulnerability.
- Research Article
29
- 10.1016/j.stem.2020.04.016
- May 11, 2020
- Cell Stem Cell
ADAR1-Dependent RNA Editing Promotes MET and iPSC Reprogramming by Alleviating ER Stress.
- Research Article
1
- 10.1093/humrep/deac107.560
- Jun 29, 2022
- Human Reproduction
Study question Does endoplasmic reticulum (ER) stress and Notch signaling affect cumulus-oocyte complex (COC) expansion in pathophysiology of polycystic ovary syndrome (PCOS)? Summary answer Notch signaling is induced via activation of ER stress in granulosa cells (GCs) of PCOS and stimulates COC expansion that is abrogated by Notch inhibition. What is known already PCOS presents a variety of symptoms including ovarian dysfunction which is caused by various local factors in follicular microenvironment; among them, ER stress and following activation of unfolded protein response are critical, causing ovarian fibrosis, growth arrest of antral follicles and other ovarian dysfunctions. While Notch signaling pathway plays an important role of various ovarian functions such as ovarian development, follicle growth, luteinization and steroid hormone synthesis, the potential interaction between Notch signaling and ER stress in ovarian function is not determined. Study design, size, duration To examine expression levels of Notch signaling, ovaries and granulosa-lutein cells (GLCs) were collected from PCOS patients undergoing surgery or IVF. Human GLCs were collected from follicular fluid of IVF patients and cultured under ER-stressed condition. COCs obtained from PMSG-primed mice were subjected to examine the in vitro effects of ER stress activation and Notch inhibition on COC expansion. To examine the in vivo effects of Notch inhibition, dehydroepiandrosterone-induced PCOS mouse model was used. Participants/materials, setting, methods The expression levels of Notch signaling in ovaries and GLCs were investigated by immunohistochemistry and real time qPCR. To examine whether Notch signaling is activated by ER stress, human GLCs were incubated with ER stress inducer or inhibitor and ATF4 was knocked down by RNA interference. To investigate COC expansion level, murine COCs were cultured under ER stress condition with/without Notch signaling inhibitor. The COCs were collected from PCOS mice treated with/without Notch inhibitor. Main results and the role of chance We found that the expression levels of Notch2 and Hey2, a transcription factor activated by Notch signaling, were upregulated in GCs of antral follicles from PCOS patients and PCOS mice by using immunohistochemical analysis. Similarly, mRNA levels of these genes were higher in GLCs from PCOS patients than those from control patients. Notch signaling was induced in cultured human GLCs incubated with an ER stress inducer, tunicamycin; the effect was abrogated by incubation with an ER stress inhibitor, tauroursodeoxycholic acid (TUDCA), or knockdown of activating transcription factor 4 (ATF4, a transcription factor induced by ER stress). These findings suggest that Notch signaling is induced by ER stress via ATF4 pathway in human GCs. Measuring under a microscope, the area of expanded COCs was increased in cultured murine COCs incubated with tunicamycin, while this stimulatory effect of tunicamycin was abrogated by adding a Notch signaling inhibitor, DAPT. The area of expanded COCs obtained from PCOS model mice was increased compared to control mice, while administration of DAPT to these mice reduced the area. These results suggest that ER stress-induced Notch signaling stimulate COC expansion contributing PCOS pathophysiology. Limitations, reasons for caution COC expansion area was measured only in PCOS model mouse; it is unknown whether COC expansion is induced in PCOS patients. This point requires further investigation in PCOS patients. Wider implications of the findings Our findings suggest that ER stress-induced Notch signaling affects COC expansion, associated with ovulatory dysfunction in PCOS. The detailed understandings of PCOS pathophysiology may be beneficial for substantial clinical implications and inhibition of ER stress or Notch signaling may serve as a novel therapeutic approach for PCOS. Trial registration number This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (19k09749, 19k24045, 19k24021, 21k16808, 21j12871,), a grant from the Takeda Science Foundation, a grant from The Tokyo Society of Medical Science, a grant from The Japan Society of Fertility Preservation, and a grant from The Japan Society for Menopause and Women’s Health (JMWH) (a JMWH Bayer Grant).
- Research Article
23
- 10.3389/fmicb.2018.01327
- Jun 21, 2018
- Frontiers in Microbiology
In this study, the mechanism of Muscovy duck reovirus (MDRV) p10.8 protein-induced pathogenesis was investigated, with a focus on endoplasmic reticulum (ER) stress. In chicken embryo fibroblasts cell lines (DF1), pCI-neo-flg-p10.8 protein transfection increased the phosphorylation (p-) levels of PERK and eIF2α as shown by Western blotting analysis and led to the dissociation of BiP from PERK as shown by co-immunoprecipitation (Co-IP) analysis. Results of treatment with both ER stress activator and inhibitor further confirmed that p10.8 protein induced ER stress. Subsequently, using flow cytometry analysis, it was also found that p10.8 protein induced cell cycle arrest during the G0/G1 phase. Furthermore, p10.8 transfection increased the phosphorylation levels of PERK and eIF2α, and reduced the expression levels of CDK2, CDK4, and Cyclin E according to Western blotting analysis. Treatment with ER stress activator and ER stress inhibitor after p10.8 protein transfection in DF1 cells further indicated that p10.8 protein induced ER stress, which resulted in cell cycle arrest. The results of knockdown of either PERK or eIF2α genes further confirmed that p10.8 protein-induced ER stress led to cell cycle arrest through the PERK/eIF2α pathway. Further results showed that p10.8 protein induced ER stress and apoptosis in DF1 cells. The expression levels of p-PERK, p-eIF2α, CHOP, cleaved-Caspase12, and cleaved-Caspase3 were increased by p10.8 protein. Test results of treatment with each of Tunicamycin, TUDCA and knockdown of PERK, and eIF2α, confirmed that p10.8 protein induced ER stress involving apoptosis via the PERK/eIF2α pathway. In conclusion, MDRV p10.8 protein induced ER stress that caused cell cycle arrest and apoptosis through the PERK/eIF2α pathway.
- Research Article
135
- 10.1074/jbc.m111.250431
- Sep 1, 2011
- Journal of Biological Chemistry
Vitamin D receptor (VDR)-dependent mechanisms regulate human cathelicidin antimicrobial peptide (CAMP)/LL-37 in various cell types, but CAMP expression also increases after external perturbations (such as infection, injuries, UV irradiation, and permeability barrier disruption) in parallel with induction of endoplasmic reticulum (ER) stress. We demonstrate that CAMP mRNA and protein expression increase in epithelial cells (human primary keratinocytes, HaCaT keratinocytes, and HeLa cells), but not in myeloid (U937 and HL-60) cells, following ER stress generated by two mechanistically different, pharmacological stressors, thapsigargin or tunicamycin. The mechanism for increased CAMP following exposure to ER stress involves NF-κB activation leading to CCAAT/enhancer-binding protein α (C/EBPα) activation via MAP kinase-mediated phosphorylation. Furthermore, both increased CAMP secretion and its proteolytic processing to LL-37 are required for antimicrobial activities occur following ER stress. In addition, topical thapsigargin also increases production of the murine homologue of CAMP in mouse epidermis. Finally and paradoxically, ER stress instead suppresses the 1,25(OH)(2) vitamin D(3)-induced activation of VDR, but blockade of VDR activity does not alter ER stress-induced CAMP up-regulation. Hence, ER stress increases CAMP expression via NF-κB-C/EBPα activation, independent of VDR, illuminating a novel VDR-independent role for ER stress in stimulating innate immunity.
- Abstract
- 10.1210/jendso/bvaa046.346
- May 8, 2020
- Journal of the Endocrine Society
Endometriosis exerts detrimental effects on ovarian physiology and compromises follicular health. Granulosa cells of endometriosis patients are characterized by increased apoptosis, as well as high oxidative stress. Among several pathophysiologic factors associated with endometriosis, it is expected that oxidative stress contributes to the induction of apoptosis in granulosa cells, although the underlying mechanism remains unclear. Endoplasmic reticulum (ER) stress, a local factor closely associated with oxidative stress, has emerged as a critical regulator of ovarian function. We hypothesized that ER stress is activated by high oxidative stress in granulosa cells in ovaries with endometrioma and mediates oxidative stress-induced apoptosis. Ovaries from patients with endometrioma and control were collected to determine apoptosis, oxidative stress and ER stress by TUNEL, immunohistochemical staining of 8-OHdG and ER stress sensors, respectively. Human granulosa-lutein cells (GLCs) obtained from IVF patients were cultured with H2O2 (an oxidative stress inducer) or tauroursodeoxycholic acid (TUDCA, an ER stress inhibitor in clinical use) to assess apoptosis and ER stress by quantitative PCR and FACS. Activity of pro-apoptotic factors was determined by caspase-8 activity assay and western blotting for cleaved caspase-3. Human GLCs from patients with endometrioma expressed up to two times higher level of mRNAs associated with the unfolded protein response (UPR), including ATF4, ATF6, the spliced form of XBP1, HSPA5, and CHOP. In addition, the levels of phosphorylated ER stress sensor proteins, IRE1 and PERK, were elevated. Given that ER stress results in phosphorylation of ER stress sensor proteins and induces UPR factors, these findings indicate that these cells were under ER stress. H2O2 increased expression of UPR-associated mRNAs in cultured human GLCs, and this effect was abrogated by pre-treatment with TUDCA. Treatment with H2O2 increased apoptosis and the activity of pro-apoptotic factors caspase-8 and caspase-3, both of which were attenuated by TUDCA. Our findings suggest that activated ER stress induced by high oxidative stress in granulosa cells in ovaries with endometrioma mediates apoptosis of these cells, leading to ovarian dysfunction in endometriosis patients. Targeting ER stress with currently clinically available ER stress inhibitors, or with these agents in combination with antioxidants, may serve as a novel strategy for rescuing endometriosis-associated ovarian dysfunction.
- Supplementary Content
7
- 10.4103/1673-5374.165227
- Sep 1, 2015
- Neural Regeneration Research
From adaption to death: endoplasmic reticulum stress as a novel target of selective neurodegeneration?
- Research Article
47
- 10.3390/ijms18102146
- Oct 14, 2017
- International Journal of Molecular Sciences
Age-related macular degeneration (AMD) is a complex disease with multiple initiators and pathways that converge on death for retinal pigment epithelial (RPE) cells. In this study, effects of taurine on calpains, autophagy, endoplasmic reticulum (ER) stress, and apoptosis in ARPE-19 cells (a human RPE cell line) were investigated. We first confirmed that autophagy, ER stress and apoptosis in ARPE-19 cells were induced by Earle’s balanced salt solution (EBSS) through starvation to induce RPE metabolic stress. Secondly, inhibition of ER stress by 4-phenyl butyric acid (4-PBA) alleviated autophagy and apoptosis, and suppression of autophagy by 3-methyl adenine (3-MA) reduced the cell apoptosis, but the ER stress was minimally affected. Thirdly, the apoptosis, ER stress and autophagy were inhibited by gene silencing of calpain-2 and overexpression of calpain-1, respectively. Finally, taurine suppressed both the changes of the important upstream regulators (calpain-1 and calpain-2) and the activation of ER stress, autophagy and apoptosis, and taurine had protective effects on the survival of ARPE-19 cells. Collectively, this data indicate that taurine inhibits starvation-triggered endoplasmic reticulum stress, autophagy, and apoptosis in ARPE-19 cells by modulating the expression of calpain-1 and calpain-2.
- Research Article
205
- 10.1074/jbc.m110.181164
- Sep 1, 2011
- Journal of Biological Chemistry
Expression of mutant surfactant protein C (SFTPC) results in endoplasmic reticulum (ER) stress in type II alveolar epithelial cells (AECs). AECs have been implicated as a source of lung fibroblasts via epithelial-to-mesenchymal transition (EMT); therefore, we investigated whether ER stress contributes to EMT as a possible mechanism for fibrotic remodeling. ER stress was induced by tunicamyin administration or stable expression of mutant (L188Q) SFTPC in type II AEC lines. Both tunicamycin treatment and mutant SFTPC expression induced ER stress and the unfolded protein response. With tunicamycin or mutant SFTPC expression, phase contrast imaging revealed a change to a fibroblast-like appearance. During ER stress, expression of epithelial markers E-cadherin and Zonula occludens-1 decreased while expression of mesenchymal markers S100A4 and α-smooth muscle actin increased. Following induction of ER stress, we found activation of a number of pathways, including MAPK, Smad, β-catenin, and Src kinase. Using specific inhibitors, the combination of a Smad2/3 inhibitor (SB431542) and a Src kinase inhibitor (PP2) blocked EMT with maintenance of epithelial appearance and epithelial marker expression. Similar results were noted with siRNA targeting Smad2 and Src kinase. Together, these studies reveal that induction of ER stress leads to EMT in lung epithelial cells, suggesting possible cross-talk between Smad and Src kinase pathways. Dissecting pathways involved in ER stress-induced EMT may lead to new treatment strategies to limit fibrosis.
- Research Article
192
- 10.1074/jbc.m705951200
- Feb 1, 2008
- Journal of Biological Chemistry
Cadmium triggers apoptosis of LLC-PK1 cells through induction of endoplasmic reticulum (ER) stress. We found that cadmium caused generation of reactive oxygen species (ROS) and that cadmium-induced ER stress was inhibited by antioxidants. In contrast, suppression of ER stress did not attenuate cadmium-triggered oxidative stress, suggesting that ER stress occurs downstream of oxidative stress. Exposure of the cells to either O(2)(*), H(2)O(2), or ONOO(-) caused apoptosis, whereas ER stress was induced only by O(2)(*) or ONOO(-). Transfection with manganese superoxide dismutase significantly attenuated cadmium-induced ER stress and apoptosis, whereas pharmacological inhibition of ONOO(-) was ineffective. Interestingly, transfection with catalase attenuated cadmium-induced apoptosis without affecting the level of ER stress. O(2)(*) caused activation of the activating transcription factor 6-CCAAT/enhancer-binding protein-homologous protein (CHOP) and the inositol-requiring ER-to-nucleus signal kinase 1-X-box-binding protein 1 (XBP1) proapoptotic cascades, and overexpression of manganese superoxide dismutase attenuated cadmium-triggered induction of both pathways. Furthermore, phosphorylation of proapoptotic c-Jun N-terminal kinase by O(2)(*) or cadmium was suppressed by dominant-negative inhibition of XBP1. These data elucidated 1) cadmium caused ER stress via generation of ROS, 2) O(2)(*) was selectively involved in cadmium-triggered, ER stress-mediated apoptosis through activation of the activating transcription factor 6-CHOP and inositol-requiring ER-to-nucleus signal kinase 1-XBP1 pathways, and 3) phosphorylation of JNK was caused by O(2)(*)-triggered activation of XBP1.
- Research Article
63
- 10.7150/ijbs.32550
- Jan 1, 2019
- International Journal of Biological Sciences
The mechanisms of resistance to the targeted drug sorafenib in the treatment of hepatocellular carcinoma (HCC) are poorly understood. The purpose of this study was to investigate the mechanism of sorafenib resistance and to elucidate the role of melatonin in overcoming sorafenib resistance. We first observed that sorafenib induced endoplasmic reticulum (ER) stress and activated autophagy in HCC, and the inhibition of ER stress and autophagy by specific inhibitors (PBA, TUDC and 3-MA) increased sorafenib-induced apoptosis, indicating that cells resist apoptosis by inducing ER stress and autophagy in the presence of sorafenib. Furthermore, specimens from patients with HCC revealed a close relationship between ER stress and autophagy, as demonstrated by the high correlation between expression of the autophagy-associated protein Beclin1 and expression of unfolded protein response (UPR) pathway proteins, especially PKR-like ER stress kinase (PERK); moreover, patients with combined expression of PERK and Beclin1 had more advanced disease (higher clinical stage) and a shorter overall survival time. ER stress inhibitors significantly blocked sorafenib-induced autophagy, selective knockdown of PERK and activating transcription factor 4 (ATF4) expression reduced sorafenib-induced autophagy activity compared with knockdown of the other two UPR pathways, and silencing ATF4 inhibited the expression of Beclin1. These results suggest that autophagy is downstream of ER stress and that the PERK-ATF4-Beclin1 pathway plays a role in ER stress-related autophagy. Interestingly, a low concentration of melatonin increased the sensitivity of HCC to sorafenib by inhibiting autophagy through the PERK-ATF4-Beclin1 pathway. Taken together, our findings suggest that cotreatment with sorafenib and melatonin is a potential therapy for HCC. Furthermore, ER stress-related autophagy plays key roles in apoptosis resistance. Therefore, targeting the PERK-ATF4-Beclin1 pathway may prove instrumental in HCC therapy.
- Research Article
41
- 10.1210/endocr/bqaa015
- Feb 1, 2020
- Endocrinology
Polycystic ovary syndrome (PCOS) is associated with hyperandrogenism, and we previously found that androgens activate endoplasmic reticulum (ER) stress in granulosa cells from patients with PCOS. In addition, recent studies demonstrated the accumulation of advanced glycation end products (AGEs) in granulosa cells from PCOS patients, which contribute to the pathology. Therefore, we hypothesized that androgens upregulate the receptor for AGEs (RAGE) expression in granulosa cells by activating ER stress, thereby increasing the accumulation of AGEs in these cells and contributing to the pathology. In the present study, we show that testosterone increases RAGE expression and AGE accumulation in cultured human granulosa-lutein cells (GLCs), and this is reduced by pretreatment with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor in clinical use. Knockdown of the transcription factor C/EBP homologous protein (CHOP), an unfolded protein response factor activated by ER stress, inhibits testosterone-induced RAGE expression and AGE accumulation. The expression of RAGE and the accumulation of AGEs are upregulated in granulosa cells from PCOS patients and dehydroepiandrosterone-induced PCOS mice. Administration of the RAGE inhibitor FPS-ZM1 or TUDCA to PCOS mice reduces RAGE expression and AGE accumulation in granulosa cells, improves their estrous cycle, and reduces the number of atretic antral follicles. In summary, our findings indicate that hyperandrogenism in PCOS increases the expression of RAGE and accumulation of AGEs in the ovary by activating ER stress, and that targeting the AGE-RAGE system, either by using a RAGE inhibitor or a clinically available ER stress inhibitor, may represent a novel approach to PCOS therapy.
- Research Article
- 10.20517/2394-5079.2025.02
- Sep 3, 2025
- Hepatoma Research
- Research Article
- 10.20517/2394-5079.2025.05
- Aug 7, 2025
- Hepatoma Research
- Research Article
- 10.20517/2394-5079.2024.148
- Aug 4, 2025
- Hepatoma Research
- Research Article
- 10.20517/2394-5079.2025.07
- Aug 1, 2025
- Hepatoma Research
- Research Article
- 10.20517/2394-5079.2024.123
- Jul 3, 2025
- Hepatoma Research
- Research Article
- 10.20517/2394-5079.2024.135
- May 29, 2025
- Hepatoma Research
- Research Article
- 10.20517/2394-5079.2024.143
- Apr 27, 2025
- Hepatoma Research
- Research Article
- 10.20517/2394-5079.2024.117
- Apr 23, 2025
- Hepatoma Research
- Research Article
- 10.20517/2394-5079.2024.129
- Mar 21, 2025
- Hepatoma Research
- Research Article
1
- 10.20517/2394-5079.2024.136
- Mar 14, 2025
- Hepatoma Research
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.