Abstract

To establish in utero MRI-scanning of mouse implantation sites in a 1.5 Tesla whole-body human clinical scanner for evaluation of impaired implantation, placental or developmental defects due to genetic alterations. Pregnant C57Bl/6 wild-type and Cx31-deficient mice revealing placental defects were analyzed in utero using a 1.5 Tesla whole-body clinical scanner in combination with a 3-cm-diameter single loop (slice thickness: 1.2 mm). Imaging of implantation sites was evaluated from 6.5-13.5 dpc and amount of implantation sites and in vivo development was analyzed during the critical phase of placentation from 10.5-13.5 dpc. This method provided high resolution in plane images permitting confident identification of all implantation sites from 6.5 dpc onward. A loss of 60% of Cx31-deficient embryos was demonstrated compared with controls. Repeated anesthesia as well as imaging protocols produced no gross malformations in the surviving mice. Using a human clinical MRI scanner high resolution imaging of the entire uterus of the mice and all the embryos inside could be performed. This method is well suited to noninvasively monitor and quantify embryo implantation and to follow this dynamic process in vivo without compromising pregnancy progression and embryonic development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.