Abstract
The encapsulation efficiency (EE%) reflects the amount of bioactive components that can be loaded into nanoliposomes. Obtaining a suitable nanoliposome stabiliser may be the key to improving their EE%. In this study, three polyphenols were screened as stabilisers of nanoliposomes with high nisin EE%, with curcumin nanoliposomes (Cu-NLs) exhibiting the best performance (EE% = 95.94%). Characterizations of particle size, PDI and zeta potential indicate that the Cu-NLs had good uniformity and stability. TEM found that nisin accumulated at the edges of the Cu-NLs' phospholipid layer. DSC and FT-IR revealed that curcumin was involved in the formation of the phospholipid layer and altered its structure. FT-IR and molecular docking simulations indicate that the interactions between curcumin and nisin are mainly hydrogen bonding and hydrophobic. In whole milk, Cu-NLs effectively protected nisin activity. This study provides an effective strategy for improving the EE% of nanoliposomes loaded with nisin and other bacteriocins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.