Abstract
Parthenium hysterophorus world’s seven most devastating and hazardous weeds, and is abundantly available in several parts of the world. This study treats the subject of effective utilization of this waste biomass (which has cellulose content of 45.2±1.81% w/w) for biofuels production. We have presented a comprehensive and comparative assessment of numerous pretreatment strategies for P. hysterophorus, comprising of all major physical, chemical and physicochemical methods. The yardstick of assessment has been amount of fermentable sugars released during the pretreatment and the post-treatment enzymatic hydrolysis of pretreated biomass. Carboxymethylcellulase (1.0U/mg, 1.7mg/mL) produced by an isolate Bacillus amyloliquefaciens SS35 and β-glucosidase (Novozyme 188), have been used for enzymatic hydrolysis of pretreated biomass. Among the different methods employed for pretreatment, the most efficient treatment has been revealed to be autoclaving of biomass at 121°C and 15psi pressure for 30min in acidic (1% v/v, H2SO4) environment. Total reducing sugar (TRS) yield during this pretreatment, mainly due to hydrolysis of hemicellulosic fraction of biomass, has been 285.3mg/g of raw biomass. Further enzymatic hydrolysis resulted in reducing sugar yield of 187.4mg/g of pretreated biomass (9.37g/L). The total fermentable sugar (TFS) yield from the optimized pretreatment was 397.7mg/g raw biomass (39.77g/100g raw biomass). The effects of different pretreatment methods on biomass structure and complexity were investigated by field emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques. Comparative assessment of the results with pretreatment and hydrolysis of other conventional agro- and forest residues shows that P. hysterophorus has same potential for being the feedstock for biofuels. These results conclusively demonstrate the utility of P. hysterophorus for sustainable biofuels production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.