Abstract
Alkaptonuria (AKU) is an autosomal recessive disorder, which is caused by a site-specific mutation(s) and thus, impaired the function of Homogentisate-1, 2-dioxygenase (HGD), an essential enzyme for the catabolism of phenylalanine and tyrosine. Among frameshift, intronic, splice-site and missense mutations, the latter has been the most common form of genetic variations for the disease. How do the acquired mutations in HGD correlate with the disease? Systematic staged-screening of some sixty-five mutations, which are known to have a relation with the disease, by GVGD, SIFT, SNAP, PANTHER, SDM, PHD-SNP, Meta-SNP, Pmut and Mutpred methods, showed that mutations, W60G, A122D and V300G are potentially related with the severity of AKU. Detailed analyses on molecular docking and molecular dynamics simulation (MDS) of these mutants against the wild-type HGD reveal the loss of structural and molecular dynamic properties of the enzyme. Further, the observed conformational flexibility in mutants at targeted peptide segments seems to have a relation with the impairment of the function of HGD. Taken together, the study involves a designed computational methodology to analyse the disease-associated nsSNPs for AKU, the knowledge of which seems to have potential applications in drug therapies for the disease in particular and other similar systems in general. Communicated by Ramaswamy H. Sarma
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.