Abstract
The base excision repair (BER) pathway is crucial for DNA repair, and apurinic/apyrimidinic endonuclease 1 (APE1) is a critical enzyme in this pathway. Overexpression of APE1 has been linked to multidrug resistance in various cancers, including lung cancer, colorectal cancer, and other malignant tumors. Therefore, reducing APE1 activity is desirable to improve cancer treatment. Inhibitory aptamers, which are versatile oligonucleotides for protein recognition and function restriction, are a promising tool for this purpose. In this study, we developed an inhibitory aptamer for APE1 using systematic evolution of ligands by exponential (SELEX) technology. We used carboxyl magnetic beads as the carrier and APE1 with a His-Tag as the positive screening target, while the His-Tag itself served as the negative screening target. The aptamer APT-D1 was selected based on its high binding affinity for APE1, with a dissociation constant (Kd) of 1.306 ± 0.1418 nM. Gel electrophoresis analysis showed that APT-D1 at a concentration of 1.6 μM could entirely inhibit APE1 with 21 nM. Our results suggest that these aptamers can be utilized for early cancer diagnosis and the treatment, and as an essential tool for studying the function of APE1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.