Abstract
Although silicon technology can be adopted for the fabrication of microfluidic devices with high precision, the capital and operating costs for such technology is often prohibitively expensive. In recent years, many alternative methods have been advocated to reduce the cost of microfabrication but often with reduced qualities in many important features, such as channel resolution, surface smoothness and aspect ratio. In this study, we have developed a microfabrication method that retains high channel quality and aspect ratio by exploring a rarely used solder resist material in combination with screen printing technique to generate masters where PDMS-based microfluidic devices could be fabricated by replica molding from the masters. Using screen printing, different channel heights from 5 to 60μm on the master were prepared by varying mesh density, controlling solder resist viscosity, and/or adjusting the off-contact gap between a mesh and a substrate, while the entire master fabrication process was completed within 3h. This simple, low-cost method could generate fine channel features (50μm) and high aspect ratio (2:1) structures. Microfluidic devices with multi-level structure could be fabricated by multi-steps photolithography using this approach. Moreover, the properties of solder resist enabled the fabrication of flask-shaped well structures by controlled partial exposure and development in a single-step of photolithography, which was potentially used as cell holding reservoirs for cell quantification and cell culture. We believe this fabrication method can be easily adopted by other laboratories to conduct microfluidic researches without specialized equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.