Abstract

AbstractWe extend Landau's concept of the score structure of a tournament to that of the score sequence of an oriented graph, and give a condition for an arbitrary integer sequence to be a score sequence. The proof is by construction of a specific oriented graph Δ(S) with given score sequence S. It is shown that Δ(S) is transitive and has the minimum number of arcs among the oriented graphs with score sequence S.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.