Abstract

Age-related osteoblast dysfunction is the main cause of age-related bone loss in both men and women. In the present study, the effect of sciadopitysin, a type of biflavonoids, on osteoblast function was investigated in osteoblastic MC3T3-E1 cells. Sciadopitysin caused a significant elevation of alkaline phosphatase activity, collagen synthesis, osteocalcin production, mineralization, and glutathione content in the cells (P<0.05). Sciadopitysin also decreased the production of tumor necrosis factor-a (TNF-α) induced by antimycin A, a mitochondrial electron transport inhibitor. We investigated the protective effects of sciadopitysin on antimycin A-induced toxicity in osteoblastic MC3T3-E1 cells. Exposure of MC3T3-E1 cells to antimycin A caused a significant reduction in osteoblast dysfunction. However, pretreatment with sciadopitysin prior to antimycin A exposure significantly reduced antimycin A-induced cell damage by preventing mitochondrial membrane potential dissipation, adenosine triphosphate (ATP) loss, reactive oxygen species (ROS) release, and nitrotyrosine increase, suggesting that sciadopitysin may be useful for protecting mitochondria against a burst of oxidative stress. Moreover, sciadopitysin increased phosphorylation of cAMP-response element-binding protein (CREB) inhibited by antimycin A. Our results demonstrate that sciadopitysin may reduce or prevent osteoblasts degeneration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.