Abstract
We study particular sequences of rational matrix functions with poles outside the unit circle. These Schur–Nevanlinna–Potapov sequences are recursively constructed based on some complex numbers with norm less than one and some strictly contractive matrices. The main theme of this paper is a thorough analysis of the matrix functions belonging to the sequences in question. Essentially, such sequences are closely related to the theory of orthogonal rational matrix functions on the unit circle. As a further crosslink, we explain that the functions belonging to Schur–Nevanlinna–Potapov sequences can be used to describe the solution set of an interpolation problem of Nevanlinna–Pick type for matricial Schur functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.