Abstract
There is a long-standing conjecture attributed to I. Schur that if $G$ is a finite group with Schur multiplier $M(G)$ then the exponent of $M(G)$ divides the exponent of $G$. In this note I give an example of a four generator group $G$ of order $5^{4122}$ with exponent $5$, where the Schur multiplier $M(G)$ has exponent $25$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.