Abstract

In the present work, electromagnetic field confinement in a subwavelength waveguide structure is obtained using concepts of quantum mechanics and uncertainty principle. Semi-macroscopic considerations of field interaction at the dielectric interfaces are used in this work. The modal field profile in the subwavelength waveguide is obtained by considering the photon as a particle in the waveguide having finite probability of tunneling. Thus, uncertainty of position is assigned to it. The momentum uncertainty is calculated from position uncertainty. Schrödinger wave equation for the photon is written by incorporating position-momentum uncertainty. The equation is solved and the field distribution in the waveguide is obtained. The field distribution and power confinement is compared with conventional waveguide theory. They were found in good agreement with each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.