Abstract

In this paper, we consider an initial/boundary value problem for the Schrödinger equation with the Hamiltonian involving the fractional Sturm–Liouville operator with singular propagation and potential. To construct a solution, first considering the coefficients in a regular sense, the method of separation of variables is used, which leads the solution of the equation to the eigenvalue and eigenfunction problem of the Sturm–Liouville operator. Next, using the Fourier series expansion in eigenfunctions, a solution to the Schrödinger equation is constructed. Important estimates related to the Sobolev space are also obtained. In addition, the equation is studied in the case where the initial data, propagation, and potential are strongly singular. For this case, the concept of “very weak solutions” is used. The existence, uniqueness, negligibility, and consistency of very weak solution of the Schrödinger equation are established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.