Abstract
We present detailed ON-state gate current characterization of Schottky gate p-GaN capped AlGaN/GaN high-electron-mobility transistors (HEMTs) on two distinct gate processes. The threshold voltage is monitored from 10 μs up to 100 s under positive gate bias stress and during recovery. The threshold voltage stability is affected by the balance between hole and electron current in the gate stack. More specifically, devices with uniform hole conduction across the p-GaN gate area demonstrate stable threshold voltage behavior up to V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g </sub> = 5 V, whereas devices with a dominating gate perimeter electron conduction demonstrate larger instabilities. Finally, the threshold voltage stability during OFF-state pulsed stress is investigated and correlated to the excess gate-to-drain charge extracted from capacitance curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Device and Materials Reliability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.