Abstract
We describe an approach to automatically invent/explore new mathematical theories, with the goal of producing results comparable to those produced by humans, as represented, for example, in the libraries of the Isabelle proof assistant. Our approach is based on ‘schemes’, which are terms in higher-order logic. We show that it is possible to automate the instantiation process of schemes to generate conjectures and definitions. We also show how the new definitions and the lemmata discovered during the exploration of the theory can be used not only to help with the proof obligations during the exploration, but also to reduce redundancies inherent in most theory formation systems. We implemented our ideas in an automated tool, called IsaScheme, which employs Knuth-Bendix completion and recent automatic inductive proof tools. We have evaluated our system in a theory of natural numbers and a theory of lists.KeywordsMathematical theory explorationschemestheorem provingterm rewritingtermination
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.