Abstract

This paper proposes a new scheduling method for multiple mutators and a garbage collector running on embedded real-time systems with a single processor and no virtual memory. The hard real-time tasks should reserve a certain amount of heap memory to prevent memory starvation and/or deadline miss. Since the memory requirement depends on the worst-case response time of a garbage collector, the traditional approach in which garbage collection is performed in the background demands large memory space. The proposed scheduling algorithm is based on an aperiodic scheduling technique, sporadic server . This paper also presents a modified copying garbage collection algorithm with hardware support. In order to minimize the worst-case response time of a garbage collector thus reducing the memory requirement, the garbage collector runs as the highest priority task with a preset bandwidth. This paper also investigates the schedulability of a garbage collector and mutator tasks as well as the worst-case memory requirement. Performance analysis shows that the proposed algorithm can provide a considerable reduction in the worst-case memory requirement compared with the background policy. Simulation results demonstrate that the proposed algorithm can produce the feasible memory requirement comparable to the complex on-line scheduling algorithm such as slack stealing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.