Abstract
Solving multi-objective scientific and engineering problems is, generally, a very difficult goal. In these optimization problems, the objectives often conflict across a high-dimensional problem space and require extensive computational resources. In this paper, a migration model of parallelization is developed for a genetic algorithm (GA) based multi-objective evolutionary algorithm (MOEA). The MOEA generates a near-optimal schedule by simultaneously achieving two contradicting objectives of a flexible manufacturing system (FMS). The parallel implementation of the migration model showed a speedup in computation time and needed less objective function evaluations when compared to a single-population algorithm. So, even for a single-processor computer, implementing the parallel algorithm in a serial manner (pseudo-parallel) delivers better results. Two versions of the migration model are constructed and the performance of two parallel GAs is compared for their effectiveness in bringing genetic diversity and minimizing the total number of functional evaluations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.