Abstract

Our ongoing research is devoted to various aspects of predicting invasive processes in unstable biosystems. Extreme events are interesting for modeling. The purpose of this work is to describe in a computational experiment a scenario of active counteraction, which temporarily suppresses the development of an aggressive invasive process. The impact in a situation of slow regulation begins to affect not the small initial group N(0) L of individuals of the invading species, but only when the critical population threshold is reached. Relevance let us consider in the model a scenario that can be interpreted as an artificially created resistance in case of delayed immune activation. In most cases, after invasion, the presence of the species remains, but below its biological optimum. Method a modification of the equation with two delays is used. Novelty a model has been obtained where it is possible to overcome the crisis or the death of the population, depending on the time of activation of the impact. The oscillatory scenario is not observed in the model. The equation with a threshold reaction assumes further expansion and use in the composition of multicomponent polymodel complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.