Abstract

Single-cell RNA-sequencing (scRNA-seq) techniques provide unprecedented opportunities to investigate phenotypic and molecular heterogeneity in complex biological systems. However, profiling massive amounts of cells brings great computational challenges to accurately and efficiently characterize diverse cell populations. Single cell discriminant analysis (scDA) solves this problem by simultaneously identifying cell groups and discriminant metagenes based on the construction of cell-by-cell representation graph, and then using them to annotate unlabeled cells in data. We demonstrate scDA is effective to determine cell types, revealing the overall variabilities between cells from eleven data sets. scDA also outperforms several state-of-the-art methods when inferring the labels of new samples. In particular, we found scDA less sensitive to drop-out events and capable to label a mass of cells within or across datasets after learning even from a small set of data. The scDA approach offers a new way to efficiently analyze scRNA-seq profiles of large size or from different batches. scDA was implemented and freely available at https://github.com/ZCCQQWork/scDA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.