Abstract

The scavenging effect of magnesium oxide (MgO) addition on electrical property of 9 mol-% MgO partially stabilised zirconia (Mg-PSZ) was investigated in terms of phase transformation and intergranular phase formation. The addition of MgO up to 5 mol-% caused a stabilisation of Mg-PSZ, which led to an increase in the cubic phase and a decrease in the monoclinic and tetragonal phases in Mg-PSZ. The Mg-PSZ with the addition of 5 mol-% of MgO also exhibited the maximum ionic conductivity (0.3915 S cm−1 at 1500°C) and forsterite (Mg2SiO4) was observed on the grain boundaries of Mg-PSZ. The intergranular phases, formed by reactions between the silicon in Mg-PSZ and MgO addition, reduced the grain boundary resistance, because the siliceous phase which is a hindrance for oxygen ion conduction was scavenged by the formation of Mg2SiO4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.