Abstract

The interplay between geometrical confinement and materials considerations can efficiently reduce phonon-assisted transport, enabling scattering time and dissipation engineering in quantum devices. In resonant tunneling (RT) structures, quenching of phonon-assisted transmission leading to considerable reduction of the off-resonance valley-current is shown to occur in interband devices. In structures of low dimensionality such as quantum wires, electron-phonon scattering exhibits size effects and intersubband resonances which modulates the drift velocity and conductance of one-dimensional systems. Quantum dot nanostructures offer large flexibility for reduction and modulation of dissipative processes such as oscillatory hopping conductance induced by acoustic phonons in linear chains of quantum dots or negative differential resistance curve shaping in RT through quantum dot arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.