Abstract

We study the global behavior of small solutions of the Gross–Pitaevskii equation in three dimensions. We prove that disturbances from the constant equilibrium with small, localized energy, disperse for large time, according to the linearized equation. Translated to the defocusing nonlinear Schrödinger equation, this implies asymptotic stability of all plane wave solutions for such disturbances. We also prove that every linearized solution with finite energy has a nonlinear solution which is asymptotic to it. The key ingredients are: (1) some quadratic transforms of the solutions, which effectively linearize the nonlinear energy space, (2) a bilinear Fourier multiplier estimate, which allows irregular denominators due to a degenerate non-resonance property of the quadratic interactions, and (3) geometric investigation of the degeneracy in the Fourier space to minimize its influence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.